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Motivation

Explorations techniques are crucial for an agent to be able to solve novel complex problems.

Thompson sampling based on Laplace approximation is not a good estimation for the posterior distribution

when the value function has more general forms than linearity.

Sampling from a Gaussian distribution with general covariance matrix in high dimensional problem is

computationally inefficient.

Highlights

We propose a class of practical and efficient online RL algorithm Least-Squares Value Iteration with

Approximate Sampling Exploration (LSVI-ASE) based on Feel-Good Thompson Sampling and various

approximate sampling methods

On high-level, LSVI-ASE only needs to perform noisy gradient descent updates for exploration.

We theoretically prove that LSVI-ASE achieves a Õ(dH3/2√T ) regret under linear MDP settings, where d
is the dimension of the feature mapping, H is the planning horizon, and T is the total number of steps.
We provide extensive experiments on both N-chain environments and challenging Atari games that
require deep exploration.

Algorithm

Algorithm 1 Least-Squares Value Iteration with Approximate Sampling Exploration (LSVI-ASE)

1: Input: feel-good prior weight η, step sizes {ηk > 0}k, temperature β, friction coefficient γ.
2: Initialize w1,0.
3: for episode k = 1, 2, . . . , K do

4: Receive the initial state sk
1 .

5: wk,0 = wk−1,Jk−1

6: for j = 1, . . . , Jk do

7: Generate wk,j via an approximate sampling method

8: end for

9: Qk(·, ·)← Q(wk,Jk; φ(·, ·))
10: for step t = 1, 2, . . . until end of episode do
11: Take action ak

t ← argmaxa∈AQk(sk
t , a). Observe reward rk(sk

t , ak
t ), get next state sk

t+1.
12: end for

13: end for

Feel-Good Thompson Sampling

Define a general TD loss function

Lk
TD(w) =

k−1∑
τ=1

T∑
t=1

[
r(xτ

t , aτ
t ) + max

a∈A
Qk(xτ

t+1, a)−Q(w; φ(xτ
t , aτ

t ))
]2

+ λ‖w‖2

We let Lk
prior

(w) = −η
∑k−1

τ=1maxa∈AQ(w; xτ
1 , a), where Lk

prior
is the Feel-Good exploration prior term.

We use the overall loss function Lk(w) = Lk
TD

(w) + Lk
prior

(w).

Langevin Monte Carlo for Reinforcement Learning

Langevin Monte Carlo update:

wk+1 = wk − ηk∇L(wk) +
√

2ηkβ−1εk,

It approximately samples from πk ∝ exp (−βL(w)).
It is computationally efficient due to

it only needs to sample εk from isotropic Gaussian N (0, I).
it only needs to perform noisy gradient descent updates.

Deep Q-Network with LMC Exploration

Algorithm 2 (Feel-Good) LMCDQN Update

1: wk,0 = wk−1,Jk−1, mk,0 = mk−1,Jk−1, vk,0 = vk−1,Jk−1

2: for j = 1, . . . , Jk do

3: εk,j ∼ N (0, I)
4: wk,j = wk,j−1 − ηk

(
∇L̃k(wk,j−1) + amk,j−1 �

√
vk,j−1 + λ11

)
+
√

2ηkβ−1εk,j

5: mk,j = α1mk,j−1 + (1− α1)∇L̃k(wk,j−1)
6: vk,j = α2vk,j−1 + (1− α2)∇L̃k(wk,j−1)�∇L̃k

h(wk,j−1
h )

7: end for

Underdamped Langevin Monte Carlo for Reinforcement Learning

Underdamped Langevin Monte Carlo update:

wk+1 = wk + ηkPk,

Pk+1 = Pk − ηk∇L(wk)− γηkPk +
√

2β−1γηkεk,

where εk ∼ N (0, I), γ is the friction coefficient, ηk is the step size and β is the temperature.

Underdamped LMC performs better in high-dimensional and poorly conditioned settigs.

Deep Q-Network with Underdamped LMC Exploration

Algorithm 3 (Feel-Good) Underdamped LMCDQN Update

1: wk,0 = wk−1,Jk−1, mk,0 = mk−1,Jk−1, vk,0 = vk−1,Jk−1, P k,0 = P k−1,Jk−1

2: for j = 1, . . . , Jk do

3: εk,j ∼ N (0, I)
4: mk,j = α1mk,j−1 + (1− α1)∇L̃k(wk,j−1)
5: vk,j = α2vk,j−1 + (1− α2)∇L̃k(wk,j−1)�∇L̃k(wk,j−1)
6: P k,j = (1− γηk)P k,j−1 + ηk

(
∇L̃k(wk) + amk,j−1 �

√
vk + λ1

)
+
√

2β−1γηkεk,j

7: wk,j = wk,j−1 − ηkP k,j

8: end for

Theoretical Results

Table 1. Regret upper bound for episodic, non-stationary, linear MDPs.

Computational Sampling
Algorithm Regret Exploration

Tractability Complexity

LSVI-UCB [Jin et al., 2020] Õ(d3/2H3/2√T ) UCB Yes NA

OPT-RLSVI [Zanette et al., 2020] Õ(d2H2√T ) TS Yes NA

ELEANOR [Zanette et al., 2020] Õ(dH3/2√T ) Optimism No NA

CPS [Dann et al., 2021] Õ(dH2√T ) FGTS No NA

LSVI-PHE [Ishfaq et al., 2021] Õ(d3/2H3/2√T ) TS Yes NA

LMC-LSVI [Ishfaq et al., 2024] Õ(d3/2H3/2√T ) LMC Yes Θ̃(κ3K3H3
d ln(dT ) )

LSVI-ASE with LMC sampler Õ(dH3/2√T ) FGTS & LMC Yes Θ̃(κ3K3H3
d ln(dT ) )

LSVI-ASE with ULMC sampler Õ(dH3/2√T ) FGTS & ULMC Yes Θ̃(κ3/2K2H2√
d ln(dT ))

N-Chain Environment

Figure 1. The N-Chain environment

N-Chain Experiments
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Figure 2. As N increases, the exploration hardness increases. All results are averaged over 20 runs and the shaded areas represent
95% confidence interval.

Atari Experiments
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Figure 3. Return curves of various algorithms in Atari tasks over 50 million training frames. Solid lines correspond to the median

performance over 5 random seeds, and the shaded areas correspond to 90% confidence interval.
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