Provable and Practical: Efficient Exploration in Reinforcement Learning via

Langevin Monte Carlo

Haque Ishfaq * ${ }^{12 \boxtimes}$, Qingfeng Lan *3, Pan Xu 4, Rupam Mahmood 3, Doina Precup ${ }^{12}$, Anima Anandkumar 56 Kamyar Azizzadenesheli ${ }^{6}$

R UNIVERSITY OF ALBERTA

McGill

- Mila- Quebec AI Institute
${ }^{1}$ Mila - Quebec Al Institute
${ }^{2}$ McGill University
${ }^{3}$ University of Alberta
4Duke University
${ }^{5}$ Caltech
${ }^{6}$ Nvidia

Motivation

- Explorations techniques are crucial for an agent to be able to solve novel complex problems.
- Thompson sampling based on Laplace approximation is not a good estimation for the
posterior distribution when the value function has more general forms than linearity.
- Sampling from a Gaussian distribution with general covariance matrix in high dimensional
problem is computationally inefficient.
Highlights
- We propose a practical and efficient online RL algorithm Langevin Monte Carlo Least-Squares Value Iteration (LMC-LSVI), which only needs to perform noisy gradient descent updates for exploration.
We theoretically prove that LMC-LSVI achieves a $\widetilde{O}\left(d^{3 / 2} H^{3 / 2} \sqrt{T}\right)$ regret under linear MDP settings, where d is the dimension of the feature mapping, H is the planning horizon, and T We further propose. Adam
preconditioned variant of LMC-LSV Monte Carlo Deep Q-Network (Adam LMCDQN), improved empirical performance.

Setting

We consider online finite horizon $\operatorname{MDPs}(\mathcal{S}, \mathcal{A}, H, \mathbb{P}, r)$, where \mathcal{S} is the state space, \mathcal{A} is the action space, H is the horizon length, \mathbb{P} is the state transition kernel and r is the reward function.
Value function and Action-value function of policy π :

$$
V_{h}^{\pi}(x)=\mathbb{E}_{\pi}\left[\sum_{h^{\prime}=h}^{H} r_{h^{\prime}}\left(x_{h^{\prime}}, a_{h^{\prime}}\right) \mid x_{h}=x\right], \quad Q_{h}^{\pi}(x, a)=\mathbb{E}_{\pi}\left[\sum_{h^{\prime}=h}^{H} r_{h^{\prime}}\left(x_{h^{\prime}}, a_{h^{\prime}}\right) \mid x_{h}=x, a_{h}=a\right] .
$$

- Any algorithm can be measured by it's regret

$$
\operatorname{Regret}(K)=\sum_{k=1}^{K}\left[V_{1}^{*}\left(x_{1}^{k}\right)-V_{1}^{\pi^{k}}\left(x_{1}^{k}\right)\right] .
$$

Langevin Monte Carlo for Reinforcement Learning

- Define a general loss function
$L_{h}^{k}\left(w_{h}\right)=\sum_{\tau=1}^{k-1}\left[r_{h}\left(x_{h}^{\tau}, a_{h}^{\tau}\right)+\max _{a \in \mathcal{A}} Q_{h+1}^{k}\left(x_{h+1}^{\tau}, a\right)-Q\left(w_{h} ; \phi\left(x_{h}^{\tau}, a_{h}^{\tau}\right)\right)\right]^{2}+\lambda\left\|w_{h}\right\|^{2}$ - Langevin Monte Carlo update:

$$
w_{k+1}=w_{k}-\eta_{k} \nabla L\left(w_{k}\right)+{\sqrt{2 \eta_{k} \beta^{-1}} \epsilon_{k},}^{\text {In }}
$$

- It approximately samples from $\pi_{k} \propto \exp \left(-\beta L_{k}(w)\right)$.
- When Q is linear, $\pi_{b}=\mathcal{N}\left(\widehat{w}_{k} \beta^{-1} \Lambda^{-1}\right)$ where Λ_{k}.
- When Q is linear, $\pi_{k}=\mathcal{N}\left(\widehat{w}_{k}, \beta^{-1} \Lambda_{k}^{-1}\right)$ where $\Lambda_{k}=\sum_{\tau=1}^{k-1} \phi\left(x_{h}^{\tau}, a_{h}^{\tau}\right) \phi\left(x_{h}^{\tau}, a_{h}^{\tau}\right)^{\top}+\lambda I$ - LMC-LSVI approximately samples from the true posterior distribution.

LMC-LSVI is computationally efficient due to

- it only needs to sample from isotropic Gaussian $\mathcal{N}(0, I)$.
- it only needs to perform noisy gradient descent updates.

Algorithm
$\overline{\overline{\text { Algorithm }} 1 \text { Langevin Monte Carlo Least-Squares Value Iteration (LMC-LSVI) }}$

1: Input: step sizes $\left\{\eta_{k}>0\right\}_{k \geq 1}$, inverse temperature $\left\{\beta_{k}\right\}_{k \geq 1}$, loss function $L_{k}(w)$.
2: Initialize $w_{h}^{1,0}=0$ for $h \in[H], J_{0}=0$.
for episode $k=1,2, \ldots, K$ do
Receive the initial state s_{1}^{k}.
for step $h=H, H-1$
$w_{h}^{k, 0}=w_{h}^{k-1, J_{k-1}}$

$$
\begin{gathered}
w_{h}^{k, 0}=w_{h}^{n-1, v_{k-1}} \\
\text { for } j_{k}=\ldots, J_{k} \text { do } \\
k_{k, j} \sim \mathcal{N}(0 I
\end{gathered}
$$

$$
\begin{aligned}
& \epsilon_{h}^{k, j} \sim \mathcal{N}(0, I) \\
& w_{h}^{k, j}=w_{h}^{k, j-1}-\eta_{k} \nabla L_{h}^{k}\left(w_{h}^{k, j-1}\right)+\sqrt{2 \eta_{k} \beta_{k}^{-1}} \epsilon_{h}^{k, j}
\end{aligned}
$$

end for

$$
\begin{aligned}
& Q_{h}^{k} \cdot(\cdot, \text {, } \\
& \text { end for }
\end{aligned}
$$

for step $h=1,2, \ldots, H$ do
Take action $a_{h}^{k} \leftarrow \operatorname{argmax}_{a \in \mathcal{A}} Q_{h}^{k}\left(s_{h}^{k}, a\right)$. Observe reward $r_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right)$, get next state s_{h+1}^{k}.
end for end for
end for

Theoretical Results

Theorem 1 (Regret bound for linear MDP). For any $\delta \in(0,1)$ and appropriate β_{k}, η_{k}, under the assumption of linear MDP, the regret of Algorithm 1 satisfies
$\operatorname{Regret}(K)=\widetilde{O}\left(d^{3 / 2} H^{3 / 2} \sqrt{T}\right)$,
with probability at least $1-\delta$

$$
\operatorname{Regret}(K)=\widetilde{O}\left(d^{3 / 2} H^{3 / 2} \sqrt{T}\right),
$$

able 1. Regret upper bound for episodic, non-stationary, linear MDPs,

Algorithm	Regret	Exploration	Computational	Efficiency	Scability
LSVI-UCB [Jin et al., 2020]	$\tilde{\mathcal{O}}\left(d^{3 / 2} H^{3 / 2} \sqrt{T}\right)$	UCB	Yes	No	
OPT-RLSVI [Zanette et al., 2020]	$\tilde{\mathcal{O}}\left(d^{2} H^{2} \sqrt{T}\right)$	TS	Yes	No	
ELEANOR [Zanette et al., 2020]	$\tilde{\mathcal{O}}\left(d H^{3 / 2} \sqrt{T}\right)$	Optimism	No	No	
LSVI-PHE [\|shfaq et al., 2021]	$\tilde{\mathcal{O}}\left(d^{3 / 2} H^{3 / 2} \sqrt{T}\right)$	TS	Yes	No	
LMC-LSVI (this paper)	$\tilde{\mathcal{O}}\left(d^{3 / 2} H^{3 / 2} \sqrt{T}\right)$	LMC	Yes	Yes	

Deep Q-Network with LMC Exploration

```
Algorithm 2 Adam LMCDQN Upda
    1: for step h=H,H-1,\ldots., do
    M:
    for j=1,\ldots, , J do
    4: }\quad\mp@subsup{\epsilon}{h}{k,j}~\mathcal{N}(0,I
5: }\quad\mp@subsup{w}{h}{k,j}=\mp@subsup{w}{h}{k,j-1}-\mp@subsup{\eta}{k}{}(\nabla\widetilde{L}\mp@subsup{L}{h}{k}(\mp@subsup{w}{h}{k,j-1})+a\mp@subsup{m}{h}{k,j-1}\otimes\sqrt{}{\mp@subsup{v}{h}{k,j-1}+\mp@subsup{\lambda}{1}{}\mathbf{1}})+\sqrt{}{2\mp@subsup{\eta}{k}{}\mp@subsup{\beta}{k}{-1}\mp@subsup{\epsilon}{h}{k,j}
        M}\mp@subsup{m}{h}{k,j}=\mp@subsup{\alpha}{1}{\prime2}\mp@subsup{m}{h}{k,j-1}+(1-\mp@subsup{\alpha}{1}{})\nabla\mp@subsup{\tilde{I}}{L}{k}(\mp@subsup{w}{}{k,j-1}
    \mp@subsup{v}{l}{k,j}=\mp@subsup{\alpha}{2}{}\mp@subsup{v}{h}{k,j-1}+(1-\mp@subsup{\alpha}{2}{})\nabla\widetilde{L}\mp@subsup{L}{h}{k}(\mp@subsup{w}{h}{k,j-1})\odot\nabla\widetilde{L}
8: end for
```

Experiments

- Adam LMCDQN
- NoisyNet DQN
- Double DQN

Figure 1. Return curves of various algorithms in Atari tasks over 50 million training frames. Solid lines correspond

