

Motivation

McGill UNIVERSITY

• Explorations techniques are crucial for an agent to be able to solve novel complex problems. Thompson sampling based on Laplace approximation is not a good estimation for the

UNIVERSITY OF ALBERTA

- posterior distribution when the value function has more general forms than linearity. • Sampling from a Gaussian distribution with general covariance matrix in high dimensional
- problem is computationally inefficient.

Highlights

- We propose a practical and efficient online RL algorithm Langevin Monte Carlo Least-Squares Value Iteration (LMC-LSVI), which only needs to perform noisy gradient descent updates for exploration.
- We theoretically prove that **LMC-LSVI** achieves a $\widetilde{O}(d^{3/2}H^{3/2}\sqrt{T})$ regret under linear MDP settings, where d is the dimension of the feature mapping, H is the planning horizon, and T is the total number of steps.
- We further propose, Adam Langevin Monte Carlo Deep Q-Network (Adam LMCDQN), a preconditioned variant of LMC-LSVI based on the Adam optimizer, which provides improved empirical performance.

Setting

- We consider online finite horizon MDPs $(\mathcal{S}, \mathcal{A}, H, \mathbb{P}, r)$, where \mathcal{S} is the state space, \mathcal{A} is the action space, H is the horizon length, \mathbb{P} is the state transition kernel and r is the reward function.
- Value function and Action-value function of policy π :

$$V_h^{\pi}(x) = \mathbb{E}_{\pi} \bigg[\sum_{h'=h}^{H} r_{h'}(x_{h'}, a_{h'}) \, \big| \, x_h = x \bigg], \qquad Q_h^{\pi}(x, a) = \mathbb{E}_{\pi} \bigg[\sum_{h'=h}^{H} r_{h'}(x_{h'}, a_{h'}) \, \big| \, x_h = x, a_h = a \bigg].$$

Any algorithm can be measured by it's regret

$$\operatorname{Regret}(K) = \sum_{k=1}^{K} \left[V_1^*(x_1^k) - V_1^{\pi^k}(x_1^k) \right].$$

Langevin Monte Carlo for Reinforcement Learning

Define a general loss function

$$L_{h}^{k}(w_{h}) = \sum_{\tau=1}^{k-1} \left[r_{h}(x_{h}^{\tau}, a_{h}^{\tau}) + \max_{a \in \mathcal{A}} Q_{h+1}^{k}(x_{h+1}^{\tau}, a) - Q(w_{h}; \phi(x_{h}^{\tau}, a_{h}^{\tau})) \right]$$

Langevin Monte Carlo update:

$$w_{k+1} = w_k - \eta_k \nabla L(w_k) + \sqrt{2\eta_k \beta^{-1}} \epsilon_k,$$

- It approximately samples from $\pi_k \propto \exp(-\beta L_k(w))$.
- When Q is linear, $\pi_k = \mathcal{N}(\widehat{w}_k, \beta^{-1}\Lambda_k^{-1})$ where $\Lambda_k = \sum_{\tau=1}^{k-1} \phi(x_h^{\tau}, a_h^{\tau}) \phi(x_h^{\tau}, a_h^{\tau})^{\top} + \lambda I$.
- LMC-LSVI approximately samples from the true posterior distribution.
- LMC-LSVI is computationally efficient due to
- it only needs to sample from isotropic Gaussian $\mathcal{N}(0, I)$.
- it only needs to perform noisy gradient descent updates.

Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo

Haque Ishfaq * ¹ ² ^M, Qingfeng Lan * ³, Pan Xu ⁴, Rupam Mahmood ³, Doina Precup ¹ ², Anima Anandkumar ⁵ ⁶, Kamyar Azizzadenesheli⁶

¹Mila – Quebec Al Institute

²McGill University

³University of Alberta

Algorithm

 $1 + \lambda \|w_h\|^2$

Algorithm 1 Langevin Monte Carlo Least-Squares Value It1: Input: step sizes
$$\{\eta_k > 0\}_{k \ge 1}$$
, inverse temperature $\{\beta_k\}$ 2: Initialize $w_h^{1,0} = 0$ for $h \in [H]$, $J_0 = 0$.3: for episode $k = 1, 2, \dots, K$ do4: Receive the initial state s_1^k .5: for step $h = H, H - 1, \dots, 1$ do6: $w_h^{k,0} = w_h^{k-1,J_{k-1}}$ 7: for $j = 1, \dots, J_k$ do8: $\epsilon_h^{k,j} \sim \mathcal{N}(0, I)$ 9: $w_h^{k,j} = w_h^{k,j-1} - \eta_k \nabla L_h^k(w_h^{k,j-1}) + \sqrt{2\eta_k \beta_k^-}$ 10: end for11: $Q_h^k(\cdot, \cdot) \leftarrow \min\{Q(w_h^{k,J_k}; \phi(\cdot, \cdot)), H - h + 1\}^+$ 12: end for13: for step $h = 1, 2, \dots, H$ do14: Take action $a_h^k \leftarrow \operatorname{argmax}_{a \in \mathcal{A}} Q_h^k(s_h^k, a)$. Observents15: end for16: end for

Theoretical Results

Theorem 1 (Regret bound for linear MDP). For any $\delta \in (0,1)$ and appropriate β_k, η_k , under the assumption of linear MDP, the regret of Algorithm 1 satisfies

 $\operatorname{Regret}(K) = \widetilde{O}(d^{3/2}H^{3/2})$

with probability at least $1 - \delta$.

Table 1. Regret upper bound for episodic, non-stationary, linear MDPs.

Algorithm	Regret	Exploration	Computational Efficiency	Scalability
LSVI-UCB [Jin et al., 2020]	$\widetilde{\mathcal{O}}(d^{3/2}H^{3/2}\sqrt{T})$	UCB	Yes	No
OPT-RLSVI [Zanette et al., 2020]	$\widetilde{\mathcal{O}}(d^2H^2\sqrt{T})$	TS	Yes	No
ELEANOR [Zanette et al., 2020]	$\widetilde{\mathcal{O}}(dH^{3/2}\sqrt{T})$	Optimism	No	No
LSVI-PHE [Ishfaq et al., 2021]	$\widetilde{\mathcal{O}}(d^{3/2}H^{3/2}\sqrt{T})$	TS	Yes	No
LMC-LSVI (this paper)	$\widetilde{\mathcal{O}}(d^{3/2}H^{3/2}\sqrt{T})$	LMC	Yes	Yes

Deep Q-Network with LMC Exploration

Algorithm 2 Adam LMCDQN Update
1: for step $h = H, H - 1,, 1$ do
2: $w_h^{k,0} = w_h^{k-1,J_{k-1}}, m_h^{k,0} = m_h^{k-1,J_{k-1}}, v_h^{k,0} = v_h^{k-1,J_k}$
3: for $j = 1,, J_k$ do
4: $\epsilon_h^{k,j} \sim \mathcal{N}(0,I)$
5: $w_h^{k,j} = w_h^{k,j-1} - \eta_k \Big(\nabla \widetilde{L}_h^k(w_h^{k,j-1}) + \frac{am_h^{k,j-1}}{b} \otimes \frac{1}{b} \Big) + \frac{am_h^{k,j-1}}{b} \Big)$
6: $m_h^{k,j} = \alpha_1 m_h^{k,j-1} + (1 - \alpha_1) \nabla \widetilde{L}_h^k(w_h^{k,j-1})$
7: $v_h^{k,j} = \alpha_2 v_h^{k,j-1} + (1-\alpha_2) \nabla \widetilde{L}_h^k(w_h^{k,j-1}) \odot \nabla \widetilde{L}_h^k(w_h^{k,j-1})$
8: end for
9: end for

⁴Duke University

⁵Caltech

⁶Nvidia

Iteration (LMC-LSVI) $\{\beta_k\}_{k>1}$, loss function $L_k(w)$.

 $\overline{\epsilon}_{h}^{k,j}$

ve reward $r_h^k(s_h^k, a_h^k)$, get next state s_{h+1}^k .

$$(\sqrt{T}),$$

$$\sqrt{v_h^{k,j-1} + \lambda_1 \mathbf{1}} + \sqrt{2\eta_k \beta_k^{-1}} \epsilon_h^{k,j}$$

 $(w_h^{k,j-1})$

Figure 1. Return curves of various algorithms in Atari tasks over 50 million training frames. Solid lines correspond to the median performance over 5 random seeds, and the shaded areas correspond to 90% confidence interval.

Experiments