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Motivations

Explorations techniques are crucial for an agent to be able to solve novel complex problems.

Existing actor-critic algorithms, which are popular for continuous control tasks, suffer from

poor sample efficiency due to lack of principled exploration mechanism within them.

Langevin Monte Carlo based Thompson sampling is a powerful and efficient approach for

performing principled exploration in RL.

Challenges:

Multidimensional continuous action spaces: naively selecting exact greedy actions based on

Q posterior approximations is computationally intractable.

Value approximation errors: Overestimation bias of Q-function; instability of LMC in DNN.

Our Contributions

A novel way to perform Thompson Sampling in actor-critic algorithm through distributional

critic learning and adaptive Langevin Monte Carlo.

Enabling sampling from multimodal Q-posteriors using parallel tempering approach.
Synthetic data generation using diffusion Q action gradient method.

Langevin Monte Carlo for Reinforcement Learning

Langevin Monte Carlo update:

wk+1 = wk − ηk∇L(wk) +
√

2ηkβ−1εk,

It approximately samples from πk ∝ exp (−βL(w)).
It is computationally efficient due to

it only needs to sample εk from isotropic Gaussian N (0, I).
it only needs to perform noisy gradient descent updates.

Preliminary

Denote the entropy augmented cumulative return from st, byGt =
∑∞
i=t γ

i[ri−α log π(ai | si)].
The soft Q-value of policy π is defined as Qπ(st, at) := rt + γE[Gt+1].
Define soft state-action return, a random variable, by Zπ(st, at) := rt + γGt+1.

Observe that Qπ(s, a) = E[Zπ(s, a)].

Distributional Critic

Instead of the expected state-action return Qπ(s, a), we aim to model the distribution of the
random variable Zπ(s, a).
We define, value distribution function, Zπ(Zπ(s, a) | s, a) : S ×A → P(Zπ(s, a)) as a mapping
from (s, a) to a distribution over the soft state-action return Zπ(s, a).
We define the distributional Bellman operator in the maximum entropy framework as

T πZπ(s, a) D:= r + γ(Zπ(s′, a′)− α log π(a′ | s′)). (1)

We model the value distribution function Zψ(· | s, a) as Gaussian distribution
Zψ(· | s, a) = N (Qψ(s, a), σψ(s, a)2).

Algorithm: Langevin Soft Actor-Critic (LSAC)

Distributional Critic Learning with Adaptive Langevin Monte Carlo:

Distributional Critic Loss Function:

LZ(ψ) := E(s,a)∼BDKL(T πφ̄Zψ̄(s, a)‖Zψ(s, a)), (2)

Under some mild assumptions, the posterior over Qψ is of the form exp(−LZ(ψ))/Z , where Z
is the partition function.

Approximate sampling from the posterior using adaptive LMC:

ψk+1← ψk − η(∇ψLZ(ψk) + aζψk) +
√

2ηβ−1εk, εk ∼ N (0, Id). (3)

with adaptive preconditioner ζk is defined as ζψk := mk �
√
vk + λ1 where,

mk = α1mk−1 + (1− α1)∇LZ(ψk) and vk = α2vk−1 + (1− α2)∇LZ(ψk)�∇LZ(ψk).

Parallel Tempering and Multimodal Q Posteriors:

Performing naive LMC to approximately sample from multimodal Q posterior can converge
very slowly due to its slow mixing rate.

We use a simplified version of parallel tempering with all replicas having same temperature for

efficient exploration in the parameter space.

By running multiple LMC chains ΨQ = {ψ(i)}ni=1, we can sample Q-functions for critics from
distinct modes of the multimodal posterior while ensuring faster convergence and mixing time.

Diffusion Q Action Gradient:

We use diffusion synthesized state-action samples regularized with Q action gradients.

This ensures that the synthetic actions are not only diverse but also accurately reflect regions

of high Q value
a← a + γ∇aQψ(i)(s, a).

LSAC Encourages Exploration

(a) LSAC (ours) (b) DSAC-T (c) DIPO (d) SAC

(e) TD3 (f) PPO (g) TRPO
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Figure 1. Exploration density map in the maze environment. The two goals are located in the upper-right and

lower-left corners, as shown by the triangle markers. The starting position is at the center of the maze map.

Experiment: MuJoCo Continuous Control Tasks
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(a) Halfcheetah-v3
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(b) Ant-v3
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(c) Swimmer-v3
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(d) Walker2d-v3
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(e) Hopper-v3
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(f) Humanoid-v3
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For more details check the paper!
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