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Highlights

We study offline multitask representation learning in reinforcement learning.

Learner is provided with offline datasets from different tasks with shared representation.

We prove our proposed algorithm can learn near-accurate model and near-optimal policies.

We show theoretical benefits of using learned representation in downstream reward-free,

offline and online RL tasks.

Setting

We consider low-rank episodic MDPs (S, A, H,P, r): two unknown embedding functions

φ∗
h : S × A → Rd and µ∗

h : S → Rd such that for all s, s′ ∈ S and a ∈ A,

P ∗
h(s′ | s, a) = 〈φ∗

h(s, a), µ∗
h(s′)〉.

Value function of policy π:

V π
h,P,r(s) = E(sh′,ah′)∼(P,π)

[ H∑
h′=h

rh′(sh′, ah′)|sh = s

]
.

Upstream offline multitask learning: T tasks, each task t: Mt = (S, A, H, P t, rt).

P
(∗,t)
h (s′ | s, a) = 〈φ∗

h(s, a), µ
(∗,t)
h (s′)〉, ∀s, s′ ∈ S, a ∈ A.

We have access to offline dataset D =
⋃

t∈[T ],h∈[H ] D
(t)
h , where

D(t)
h = {(s(i,t)

h , a
(i,t)
h , r

(i,t)
h , s

(i,t)
h+1}i∈[n] with s

(i,t)
h+1 ∼ P

(∗,t)
h (· | s

(i,t)
h , a

(i,t)
h ) and D(t)

h was collected

using a fixed behavior policy πb
t .

Downstream target task T + 1 with

P (∗,T+1)(s′ | s, a) = 〈φ∗
h(s, a), µ

(∗,T+1)
h (s′)〉, ∀s, s′ ∈ S, a ∈ A.

Goal of Upstream and Downstream Tasks
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Figure 1. Upstream and Downstream Task Overview

Algorithm: Multitask Offline Representation Learning (MORL)

Learning jointly via offline Multitask Maximum Likelihood Estimation (MLE) oracle

(
φ̂h, µ̂

(1)
h , . . . , µ̂

(T )
h

)
= argmax

φh∈Φ,µ
(1)
h ,...,µ

(T )
h ∈Ψ

n∑
i=1

T∑
t=1

log
(〈

φh(s(i,t)
h , a

(i,t)
h ), µt

h(s(i,t)
h+1

〉)
.

for each t ∈ {1, . . . , T} define:

I estimated transition kernel: P̂
(t)
h (s′ | s, a) = 〈φ̂h(s, a), µ̂

(t)
h (s′)〉.

I empirical covariance matrix: Σ̂(t)
h,φ̂

=
∑n

i=1 φ̂h(s(i,t)
h , a

(i,t)
h )φ̂h(s(i,t)

h , a
(i,t)
h )> + λI.

I penalty term: b̂
(t)
h (sh, ah) = min

{
α‖φ̂h(sh, ah)‖

(Σ̂(t)
h,φ̂

)−1, 1

}
.

I Get policy π̂t = argmaxπ V
P̂ (t),rt−b̂(t)

Output: φ̂, P̂ (1), . . . , P̂ (T ), π̂1, . . . , π̂T

Theoretical Result on Upstream Task

Definition 1 (Multi-task relative condition number). For task t and time step h, we define

C∗
t,h(πt, πb

t ) as the relative condition number under φ∗
h:

C∗
t,h(πt, πb

t ) := sup
x∈Rd

x>E(sh,ah)∼(P (∗,t),πt)
[φ∗

h(sh, ah)φ∗
h(sh, ah)>]x

x>E(sh,ah)∼(P (∗,t),πb
t )

[φ∗
h(sh, ah)φ∗

h(sh, ah)>]x
.

We define C∗
t := maxh∈[H ] C

∗
t,h(πt, πb

t ) and C∗ := maxt∈[T ] C
∗
t .

Theorem 1. Under realizability assumption, with probability at least 1 − δ, for any step h ∈ [H ], we
have

1
T

T∑
t=1

E(sh,ah)∼(P (∗,t),πb
t )

[∥∥∥P̂
(t)
h (· | sh, ah) − P

(∗,t)
h (· | sh, ah)

∥∥∥
TV

]
≤

√
2 log(2|Φ||Ψ|T nH/δ)

nT
,

where φ̂, P̂ (1), . . . , P̂ (T ) be the output of MORL.

In addition, if we set α =
√

2nωζn + λd, λ = cd log(|Φ||Ψ|T nH/δ) with ζn := 2 log(2|Φ||Ψ|T nH/δ)
n

and c being a constant, where we assume that ω := maxt maxs,a(1/πb
t (a | s)) < ∞, then under

realizability assumption, with probability at least 1 − δ, we have

1
T

T∑
t=1

[
V πt

P (∗,t),rt
−V π̂t

P (∗,t),rt

]
≤ωαdH

√
C∗

n
+ 2dH2

√
λC∗

n
+ ωH2

√
dC∗ζn

T
+ α

√
d

n
+ 2H

√
ωζn

T
,

where {π̂t}t∈[T ] is the output of the algorithm MORL.

Connecting Upstream and Downstream tasks

Assumptions: reachability of behavior policies, compact state space, smoothness of transition

probabilities, and approximate linear combination.

Lemma2.Under the above assumptions, the output φ̂ ofMORL is a ξdown-approximate feature forMDP

MT+1 where ξdown = ξ + CLCRν
κ

√
2T log(2|Φ||Ψ|T nH/δ)

n , i.e. there exist a time-dependent unknown

(signed) measure µ̂∗ over S such that for any (s, a) ∈ S × A, we have

‖P
(∗,T+1)
h (·|s, a) − 〈φ̂h(s, a), µ̂∗

h(·)〉‖TV ≤ ξdown.

Downstream RL: Reward-free Exploration

Theorem 3. Under the above assumptions, after collecting KRFE trajectories during the exploration

phase, with probability at least 1 − δ, the output of the planning phase, policy π satisfies

Es1∼µ[V ∗
1 (s1, r) − V π

1 (s1, r)] ≤ c′
√

d3H4 log(dKRFEH/δ)/KRFE + 6H2ξdown. (1)

If the linear combination misspecification error ξ satisfies Õ(
√

d3/KRFE) and the number of trajectories

in the offline dataset for each upstream task is at least Õ(TKRFE/d3), then, provided KRFE is at least

O(H4d3 log(dHδ−1ε−1)/ε2), with probability 1−δ, the policy π will be an ε-optimal policy for any given

reward during the planning phase.

Algorithm Sample Complexity Task

FLAMBE [Agarwal et al., 2020] Õ(H22d7K9
ε10 ) Single task

MOFFLE [Modi et al., 2021] Õ( H7d11K14
min{ε2η,η5}) Single task

RAFFLE [Cheng et al., 2023] Õ(H5d4K
ε2 ) Single task

This work Õ(H4d3
ε2 ) Multi-task

Table 1. Sample complexities of different approaches to learning an ε-optimal policy for the reward-free RL setting

with low-rank MDPs.

Downstream RL: Offline RL and Online RL

Downstream Offline Task:

Assumption 4 (Feature coverage). There exists an absolute constant κρ such that for all h ∈ [H ]
and φh ∈ Φh, λmin(Eρ[φh(sh, ah)φh(sh, ah)>|s1 = s]) ≥ κρ.

Theorem 5 (Downstream offline task). Under the above assumptions and the sample size Noff ≥
40/κρ · log(4dH/δ), with probability at least 1 − δ, the suboptimality gap of offline downstream task is

at most

V π∗

P (∗,T+1),r
(s)−V π̂

P (∗,T+1),r
(s) ≤ O

(
κ

−1/2
ρ H2d

√
log(HdNoff max(ξdown, 1)/δ)

Noff
+κ

−1/2
ρ H2d1/2ξdown

)
.

Downstream Online Task:

Theorem 6 (Downstream online task). Let π̃ be the uniform mixture of π1, . . . , πNon. Under the above

assumptions, with probability 1 − δ, the suboptimality gap of online downstream task satisfies

V ∗
P (∗,T+1),r

− V π̃
P (∗,T+1),r

≤ Õ(H2d3/2N−1/2
on + H2dξdown).

For more details check the paper!
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